
How programming was used to determine
factorizations of self-similar groups
associated to the first Grigorchuk group

Beata BAJORSKA-HARAPIŃSKA

Abstract. One of the problems we have encountered in [1] was to determine all
generators of a group needed for the proof of one of the main theorems. Although the
final proof of this theorem is pure algebraic it would be hard to discover without tons
of calculations which we decided to perform using Mathematica. The generators of the
group in question can be treated as vertices of an infinite tree, however some vertices
correspond to the same generator. Thus the point was to find the smallest subset
of vertices of the tree corresponding to all (distinct) generators of the group. We
have used various tree-search methods (some crucial observations allowed to choose
a proper one) and eventually it turned out that all vertices we need could be taken
from the single ray of the tree. In this paper we present the way of finding this ray.

Keywords: infinite iterated wreath products, the first Grigorchuk group, Gray code.

2010 Mathematics Subject Classification: 20-04.

1. Introduction and the background of the problem

We first formulate the problem which was solved with a little help of computers.
All the definitions will be given only in the case we considered. For the general case
and some properties see the papers we cite. All the other results are taken from [1].

By [3] every element in the group
∞

≀
i=1

Z2, that is the infinite iterated wreath product

of an infinite number of copies of Z2, can be uniquely presented as an infinite sequence,
called an array, namely

g = [g1, g2(x1), g3(x1, x2), . . .], (1)

B. Bajorska-Harapińska
Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland,
e-mail: beata.bajorska@polsl.pl

R. Witu la, B. Bajorska-Harapińska, E. Hetmaniok, D. S lota, T. Trawiński (eds.), Selected Problems

on Experimental Mathematics. Wydawnictwo Politechniki Śla̧skiej, Gliwice 2017, pp. 167–179.

168 B. Bajorska-Harapińska

where g1 ∈ Z2 and for n > 2, gn ∈ Pn := Z2[x1, . . . , xn−1]/〈x
2
1−x1, . . . , x

2
n−1−xn−1〉,

that is gn is a polynomial that can be written as a sum of distinct monomials of the
form xi1 · · ·xik (note that indices are distinct, that is ij 6= is for j 6= s).

The product of g = [g1, g2(x1), . . .] and h = [h1, h2(x1), . . .] is given by the rule

gh = [g1 + h1, g2(x1) + h2(x1+g1), g3(x1, x2) + h3 (x1+g1, x2+g2(x1)) , . . .] , (2)

with addition on n-th component performed in Pn, meaning that we first add poly-
nomials in the usual way, then reduce all the powers of variables to the first one (that
is we take xp

i = xi for each natural p and i ∈ {1, . . . , n− 1}) and at last we simplify

the coefficients modulo 2. The identity element in the group
∞

≀
i=1

Z2 is

1 := [0, 0, 0, . . .]. (3)

For example, let g = h = [0, x1 + 1, x1(x2 + 1), . . . , x1 · · ·xn(xn+1 + 1), . . .]. Then
from formula (2) we get that

– the first component of gh is 0 + 0 = 0,
– the second component is (x1+1)+((x1+0)+1) = 0, since 2x1+2 (mod 2) = 0,
– the third is x1(x2+1)+(x1+0)((x2+x1+1)+1) = 0, as we have 2x1x2+x2

1+3x1 →
2x1x2 + x1 + 3x1 = 2x1x2 + 4x1 (mod 2) = 0,

– from formula (10) below we conclude that each component of gh is 0,
which means that gh actually equals the identity element defined by (3).

We have used the following general recursive construction [4]:

1. Base cases : the set Z0 and the group

H0 := 〈Z0〉 = {kε11 · · · kε1n , ki ∈ Z0, εi ∈ {±1}, n ∈ N}, (4)

2. Recursion rules : for every natural n

Zn := {z(h), z ∈ Z0, h ∈ Hn−1}, Hn := 〈Zn〉, (5)

where for every z = [z1, z2(x1), z3(x1, x2), . . .], h = [h1, h2(x1), h3(x1, x2), . . .] we
have

z(h) := [z1, z2(x1 + h1), z3(x1 + h1, x2 + h2(x1)),

z4(x1 + h1, x2 + h2(x1), x3 + h3(x1, x2)), . . .].
(6)

The set Z0 in our case was made from the generators of so-called the first Grigorchuk
group [2], which are denoted by a, b, c, d (d is actually not necessarily needed, but
convenient). In [1] we established the representations of these elements in the form (1),
namely

a = [1, 0, 0, . . .] (7)

and arrays for b, c, d are constructed as follows:

1. the first component is 0,
2. for n > 2 the n-th component is either 0 or of the form

αn(x1, . . . , xn−1) := x1x2 · · ·xn−2(xn−1 + 1), for n > 3, α2(x1) := x1 + 1 (8)

How programming was used to determine factorizations of self-similar groups. . . 169

and 0 appears every three components starting from 4th for b, 3rd for c and 2nd
for d, that is (arguments of αi are omitted for short)

b = [0, α2, α3, 0, α5, α6, 0, α8, α9, 0, α11, α12, . . .],

c = [0, α2, 0, α4, α5, 0, α7, α8, 0, α10, α11, 0, . . .], (9)

d = [0, 0, α3, α4, 0, α6, α7, 0, α9, α10, 0, α12, . . .].

Moreover, polynomials αn have the following property: for n > 3, εi ∈ {0, 1},
i = 2, ..., n− 1 and for every (x1, . . . , xn−1) ∈ Z

n−1
2 we have

αn(x1, x2 + ε2α2(x1), . . . , xn−1 + εn−1αn−1(x1, . . . , xn−2)) = αn(x1, . . . , xn−1) (10)

This was the first crucial observation. It means that the result of the action of h on
z defined by (6) is an array which probably has not a very complicated structure so
there was a hope to discover and describe it in a sensible way.

Now, to define Z0, instead of each generator g of G given by (7) and (9) we take
two: ge (with even components the same as in g and 0 elsewhere) and go (with odd
components the same as in g and 0 elsewhere). For a nothing interesting happens
as ae = [0, 0, 0, . . .] is the identity element by (3) (not important while generating
a group) and ao = a. For elements defined in (9) it follows that zero and nonzero
components appear in cycles of 6 (except for the first component, which is always 0)
and hence we have

be =[0, α2, 0, 0, 0, α6, 0, α8, 0, 0, 0, α12, 0, . . .],

bo =[0, 0, α3, 0, α5, 0, 0, 0, α9, 0, α11, 0, 0, . . .],

ce =[0, α2, 0, α4, 0, 0, 0, α8, 0, α10, 0, 0, 0, . . .],

co =[0, 0, 0, 0, α5, 0, α7, 0, 0, 0, α11, 0, α13, . . .],

de =[0, 0, 0, α4.0, α6, 0, 0, 0, α10, 0, α12, 0, . . .],

do =[0, 0, α3, 0, 0, 0, α7, 0, α9, 0, 0, 0, α13, . . .].

(11)

Since from (2), (10) and (11) we get do = boco, de = bece, elements do, de are not
necessarily needed in Z0 (because they can be obtained from other elements), so

Z0 := {a, bo, be, co, ce}. (12)

The form of elements in the group H0 given by (4) which was more convenient for
further considerations was obtained due to the algebraic properties – it turned out
that each element of H0 can be written in the form

t1at2 · · · atn, (13)

(without possibly t1 or tn) where each ti, i = 1, . . . n is an element in the set

T := {bo, co, do, be, ce, de, bobe, boce, bode, cobe, coce, code, dobe, doce, dode}. (14)

In view of formula (2) and (10), the nonzero components of each element in T of the
form qowe are exactly nonzero components of qo and we, e.g. from (11) we have

170 B. Bajorska-Harapińska

boce = [0, α2, α3, α4, α5, 0, 0, α8, α9, α10, α11, 0, . . .],

c0be = [0, α2, 0, 0, α5, α6, α7, α8, 0, 0, α11, α12, . . .].
(15)

To discover some properties of H1 we needed the set of generators Z1 (see formulas
(5)). The form of elements in Z1 defined in (6) was not obvious, however. Because
of formula (16) (given in the next section) there is a correspondence between Z1 and
the rooted tree of words X∗ on 16-element alphabet X = T ∪ {a} – more precisely,
for every element z ∈ Z0 (defined by (12)) an element of the form z(qsqs−1···q1) ∈ Z1,
qi ∈ T ∪ {a} corresponds to the vertex q1q2 · · · qs of the tree X∗. However, it follows
from definitions and the other observations that this is not 1-1 correspondence –
different vertices can correspond to the same element, e.g. aaa and a correspond to
the same element since by formula (2) we have aa = 1. So our aim was to find the
smallest set of vertices of the treeX∗ providing all elements in Z1. The idea to discover
it was to use a brute force method, namely to evaluate enough elements of the form
(6) to see some regularities. We tried to do it by hand at first. But although we used
functions instead of polynomials and observed some general properties which made
the calculations shorter, evaluating all elements of the form z(at1at2at3) still did not
give enough regularity. So it seemed to be too much work to do this way.

Fortunately, because of the regularity in the form of arrays in question we were able
to bypass the infinity in definition (6) and therefore the programming was possible.

2. The solution

Step 0. Basic algebraic observations which make the calculation of z(h) defined
by (6) as short as possible (for the proofs see [1]):

Obs.1 Each component of every element in Z1 is either 0 or a polynomial having
value 1 at exactly one point (whence a monomial). More precisely, for every
z ∈ Z0, h ∈ H0 the n-th component of z(h) is

1◦ 0 if and only if the n-th component of z is 0,
2◦ of the form αn(x1 + y1, . . . , xn−1 + yn−1), yi ∈ {0, 1} (where αi is defined

by (8)) otherwise.

That was the crucial observation which allowed to bypass the infinity. Namely,
instead of examining the whole array it was enough to consider only one
(nonzero) component, n-th say, with n large enough to catch the regularities.

Obs.2 For every z ∈ Z0 and every g, h ∈ H0 we have
(

z(gh)
)

=
(

z(h)
)(g)

. (16)

That was another crucial observation as the calculations became recursive.
Obs.3 For every h ∈ H0 we have a(h) = a.

That means that we do not have to perform the calculations for a.
Obs.4 Elements z ∈ Z1 and z(a) ∈ Z1 differ only by the factor containing x1. More

precisely, if in z we have the factor x1+y1, then in z(a) we have x1+1−y1 for
y1 ∈ {0, 1}. Moreover, actions on z ∈ Z1 by elements in T do not change x1.

How programming was used to determine factorizations of self-similar groups. . . 171

That means that we know how the results of actions by a look like.
Obs.5 For every z ∈ Z0 and every t ∈ T we have z(t) = z.

That means that the first nontrivial action is by a.

Summarizing: each element (array) in Z1 (except for a(h), which always equals a)
is of the form

[0, ε2α2(x1 + y1), ε3α3(x1 + y1, x2 + y2), ε4α4(x1 + y1, x2 + y2, x3 + y3),] (17)

with εi, yi ∈ {0, 1}. So its n-th component is either 0 or αn(x1 + y1, ..., xn−1 + yn−1).
Therefore instead of examining the whole array it is enough to consider its n-th
component (assuming nonzero), let’s call it k, for n large enough and examine the
result of the action defined by (6) by a and some t ∈ T performed on k recursively by
turns. Our aim was to discover what are the possible values for yi and how to obtain
the element in Z1 defined by a given sequence (yi) using a single element in H0.

Step 1. Basics: the function which allows to evaluate (s+1)-th (assuming nonzero)
component of an element in Z1 of the form z(h), where s is the length of h.

Procedure 1. Input: An array h = [h1, h2(x1), . . . , hs(x1, . . . , xs−1)] of the form (1)
(truncated to s components) and a polynomial k(x1, . . . , xs) over Z2 in variables
x1, . . . , xs (being s+ 1-th nonzero component of each generator in Z1).

Output: A polynomial being (s + 1)-th component in the array of the form (6),
that is k(x1 + h1, x2 + h2(x1), . . . , xs + hs(x1, . . . , xs−1)).

Step 1. For each i = 1, 2, . . . , s in k substitute xi → xi + hi(x1, . . . , xi−1),
Step 2. For each i = 1, 2, . . . , s and every p > 2 in the result of Step 1. substitute

xp
i → xi,

Step 3. Simplify the polynomial resulted from Step 2. and reduce its coefficients mod-
ulo 2.

Note that actually there is no lower bound on the number of component to be
evaluated, so it is possible to use this procedure also for q-th component of an element
in Z1 for every q 6 s.

Step 2. Breadth-first search: we wanted to check what are the possible forms
of a fixed (nonzero) component of elements in Z1. Note that by (17), if the s-th
component is nonzero, it is of the form k = αs(x1 + y1, . . . , xs−1 + ys−1) whence we
can get maximally 2s−1 distinct monomials on s-th component. Moreover, by Obs.3,
Obs.5 and formula (13) to get every possible element in Z1 it was enough to consider
only actions by elements of H0 in the form tiati−1a · · · t2at1 or atiati−1 · · · at1, ts ∈ T .
Finally, by Obs.2 the action is recursive. The first action on k, by t1, is trivial (meaning
we get k as a result), then we act on k by a (the result is given in Obs.3, so there is
still no need to use Procedure 1), then on k(a) we act by t2, then on (k(a))(t2) by a
again and so on up to tn or a. So we denote

kn :=











k n = 1,

k
(a)
n−1 n > 2 and even,

k
(t(n+1)/2)

n−1 n > 3 and odd.

(18)

172 B. Bajorska-Harapińska

The procedure giving all the necessary information is the following:

Procedure 2. Input: The polynomial k = x1x2 · · ·xs−1(xs + 1), the list T given by
(14) and the array a (all arrays truncated to s components), and the maximal length
n of elements in H0 we act by.

Output: For each i = 1, 2, . . . , n the list of all possible ki given by formula (18)
and all distinct ki together with the number and form of all distinct elements obtained
up to the moment, that is kq, q 6 i.

Step 1. Set k1 := k, listGen1 := {k},
Step 2. For each i = 2, 3, . . . , n do the following

1◦ Calculate all ki using Procedure 1 on every element of listGeni−1,
2◦ Determine the list newGeni of all ki which are not in listGeni−1,
3◦ Define the list listGeni = listGeni−1 ∪ newGeni,

Step 3. For each i = 1, 2, . . . , n display listGeni and newGeni together with the
number of their elements.

For the beginning we decided to carry on calculations for s = 4 just to check how
it works. We had called Procedure 2 increasing n up to 16 and observing that we
got exactly one new element each time we increased n by 1. Then we have increased
s and eventually we decided to carry on the calculations for s = 13 (because of the
earlier attempts this looked pretty promising to be large enough). We have evaluated
elements this way up to n = 24 using Procedure 2. Again, we got exactly one new
element each time (i.e. for each i the list newGeni contains one element only). More-
over, studying the list of all ki we observed that it is possible to get this result using
a and cobe only.

Step 3. Depth-first search: We wanted to confirm the last observation so we evalu-
ated the sequence of generators in Z1 recursively acting on k by a and t = cobe taken
in turns (i.e. treated as loops), using the following

Procedure 3. Input: The polynomial k = x1x2 · · ·xs−1(xs + 1), the arrays t = cobe
(given by (15)) and a (both truncated to s components), and the number n standing
for the half of the maximal length of elements in H0 we act by (i.e. the number of
loops).

Output: The list of all ki, i 6 2n and the number of distinct ki obtained from k
by acting by a and t only.

Step 1. Set gen1 := k, listGen1 := {k},
Step 2. For each i = 2, 3, . . . , 2n do the following

1◦ Calculate geni = ki using t for odd i and a for even i,
2◦ Determine the list listGeni of all distinct genq, q 6 i,

Step 3. Display the list {geni, i = 1, 2, . . . , 2n} and the number of elements on
listGen2n.

We have used the procedure increasing n successively. Unfortunately, it turned out
that only the first 32 elements out of 34 resulted from Procedure 3 for n = 17 are
distinct. So we needed another element u ∈ T giving new elements in Z1. Examining

How programming was used to determine factorizations of self-similar groups. . . 173

the existing generators and the element t we started to suspect that the problem
might lay in the fact that 6-th component of t is 0, which prevents the factor x6 in
k from changing. Since also 7-th component of t is 0, the same situation might have
took place in the future. We chose u = boce ∈ T as its 6-th and 7-th components are
nonzero. Evaluating k33 from k32 using u gave a new element, fortunately.

Therefore we extended the previous procedure to the following:

Procedure 4. Input: The polynomial k = x1x2 · · ·xs−1(xs+1), the arrays a, t = cobe
and u = boce (all truncated to s components) and the number n standing for the half
of the maximal length of elements in H0 we act by (=the number of loops).

Output: The list of all ki, i 6 2n and the number of distinct ki obtained from k
by acting by a and t only except for k33, which we obtain using u.

Step 1. Set gen1 := k, listGen1 := {k},
Step 2. For each i = 2, 3, . . . , 2n do the following

1◦ Calculate the element geni = ki using the array a for all even i and the
array t for all odd i except for 33; for i = 33 (if appears) use u,

2◦ Determine the list listGeni of all distinct genq, q 6 i,

Step 3. Display the list {geni, i = 1, . . . , 2n} and the number of elements on
listGen2n.

As we expected, Procedure 4 gave distinct elements (1 at each recursive step) up to
64-th. Thus we got all possible elements which could have been obtained by changing
only the first 6 factors in k, that is x1, . . . , x6. Then u was needed again to change x7.

Step 4. Choosing the ray: We have suspected that a problem would occur when
would there be time to change x9 (which was expected to take place after evaluation
all elements obtained by changing the first 8 factors in k, i.e. for element number
27 + 1 = 257), as 9-th component of u is 0. But fortunately 9-th component of t is
nonzero, so t might have been used instead of u in that case. To check our suspicion
we used a new procedure evaluating elements ki in cycles – firstly, using a and t
alternatively 15 times (i.e. making 15 loops), then a and u (1 loop) then again a, t
alternatively 15 times (15 loops). In the proper moment we have used t instead of u
(which made it 31 loops of a, t in a row) and again a and u was used. Note that it
was enough to determine how many times we have to use t and u in a row, so we
eventually defined the following list

seq={

{t, 15}, {u, 1}, {t, 15}, {u, 1}, {t, 15}, {u, 1}, {t, 15}, {u, 1},

{t, 15}, {u, 1}, {t, 15}, {u, 1}, {t, 15}, {u, 1}, {t, 31}, {u, 1},

{t, 15}, {u, 1}, {t, 15}, {u, 1}, {t, 15}, {u, 1}, {t, 15}, {u, 1},

{t, 15}, {u, 1}, {t, 15}, {u, 1}, {t, 31}, {u, 1}, {t, 15}, {u, 1},

{t, 15}, {u, 1}, {t, 15}, {u, 1}, {t, 15}, {u, 1}, {t, 15}, {u, 1},

{t, 15}, {u, 1}, {t, 31}, {u, 1}, {t, 15}, {u, 1}, {t, 15}, {u, 1},

{t, 15}, {u, 1}, {t, 15}, {u, 1}, {t, 15}, {u, 1}, {t, 15}, {u, 1},

{t, 15}, {u, 1}, {t, 15}

}

174 B. Bajorska-Harapińska

where {t,15} means that we use a and t alternatively 15 times in a row on k. This
allowed to evaluate all ki up to k1057 constructed in the above described manner. Of
course the list seq could have been defined by some procedure, note however that
we did not start with such a long list (in case we were totally wrong) but we have
extended it successively (adding 3-4 elements) up to the above form.

The procedure evaluating ki chosen in the manner determined by the list seq

and confirming our suspicion on the method of creating the list of ki is the following

Procedure 5. Input: The list seq, the polynomial k = x1x2 · · ·xs−1(xs + 1), the
arrays a, t = cobe and u = boce (all truncated to s components).

Output: the list of ki obtained from k by using a and elements defined by seq

alternatively.

Step 1. Using the list seq define the list seqEx which is the explicit list of elements
we act by.

Step 2. Evaluate ki using only elements from seqEx.
Step 3. Display the length of seqEx and the number of distinct ki obtained by seqEx.

As we suspected, both numbers given as a result of Procedure 5 were the same
which means that we have found the method of generating elements in Z1.

Step 5. Getting the proof: examining the list resulting from Procedure 5 we have
found some regularities. Recall that each ki on this list is of the form

(x1 + y1)(x2 + y2) · · · (x12 + y12)(x13 + 1− y13), yj ∈ {0, 1}

(as all the calculations starting from Step 2. were performed for s = 13). As we were
trying to observe the general rules for creating the list of ki we first made the following
general observation on the rule of changing the first 5 factors of ki. Namely, they were
changing in some order up to 32-th element (giving all the possibilities) and then in
a reversed one. Then again in the original order and again in a reversed one and so
on. So as to the other factors of ki, they remained unchanged for each consecutive 31
elements and changed each 32 elements. For instance, we have obtained the following
elements from Procedure 5

1) x[1]x[2]x[3]x[4]x[5]x[6]x[7]x[8]x[9]x[10]x[11]x[12](1+x[13])

...

32) x[1]x[2]x[3]x[4](1+x[5])x[6]x[7]x[8]x[9]x[10]x[11]x[12](1+x[13])

33) x[1]x[2]x[3]x[4](1+x[5])(1+x[6])x[7]x[8]x[9]x[10]x[11]x[12](1+x[13])

...

64) x[1]x[2]x[3]x[4]x[5](1+x[6])x[7]x[8]x[9]x[10]x[11]x[12](1+x[13])

65) x[1]x[2]x[3]x[4]x[5](1+x[6])(1+x[7])x[8]x[9]x[10]x[11]x[12](1+x[13])

...

96) x[1]x[2]x[3]x[4](1+x[5])(1+x[6])(1+x[7])x[8]x[9]x[10]x[11]x[12](1+x[13])

97) x[1]x[2]x[3]x[4](1+x[5])x[6](1+x[7])x[8]x[9]x[10]x[11]x[12](1+x[13])

To see further regularities connected with the remaining factors in ki we prepared
a table (given below) in which we encoded information on the form of ki. We have
divided the sequence (ki)i61056 in sections of 32 elements. For j between 1 and 5 we
have only marked whether this is the “original” list or the “reversed” one. For the
remaining elements we have encoded each factor xj + yj by yj only. For instance:

– Elements 1)–32) resulted from Procedure 5 (that is k1 − k32) form section 1
in the table; the first 5 factors in these elements change in some order, which we

How programming was used to determine factorizations of self-similar groups. . . 175

called “original”, giving all possible elements that could have been obtained (see
formula (17)), and all yj , j > 6 are 0,

– Elements 33)–64) (which are k33 − k64) form section 2; now the first 5 factors in
these elements change in the reversed order, y6 = 1 and the remaining yj are still 0,

– Elements 65)–96) (i.e. k65−k96) form section 3; the first 5 factors in these elements
again change in the original order, y6 = y7 = 1 and the remaining yj are still 0,

and so on.

section
index i (of ki) yj
min max j=1–5 j=6 j=7 j=8 j=9 j=10 j=11

1 1 32 (orig) 0 0 0 0 0 0
2 33 64 (rev) 1 0 0 0 0 0

3 65 96 (orig) 1 1 0 0 0 0

4 97 128 (rev) 0 1 0 0 0 0

5 129 160 (orig) 0 1 1 0 0 0
6 161 192 (rev) 1 1 1 0 0 0

7 193 224 (orig) 1 0 1 0 0 0

8 225 256 (rev) 0 0 1 0 0 0

9 257 288 (orig) 0 0 1 1 0 0

10 289 320 (rev) 1 0 1 1 0 0
11 321 352 (orig) 1 1 1 1 0 0

12 353 384 (rev) 0 1 1 1 0 0

13 385 416 (orig) 0 1 0 1 0 0

14 417 448 (rev) 1 1 0 1 0 0
15 449 480 (orig) 1 0 0 1 0 0

16 481 512 (rev) 0 0 0 1 0 0

17 513 544 (orig) 0 0 0 1 1 0

18 545 576 (rev) 1 0 0 1 1 0

19 577 608 (orig) 1 1 0 1 1 0
20 609 640 (rev) 0 1 0 1 1 0

21 641 672 (orig) 0 1 1 1 1 0

22 673 704 (rev) 1 1 1 1 1 0

23 705 736 (orig) 1 0 1 1 1 0
24 737 768 (rev) 0 0 1 1 1 0

25 769 800 (orig) 0 0 1 0 1 0

26 801 832 (rev) 1 0 1 0 1 0

27 833 864 (orig) 1 1 1 0 1 0

28 865 896 (rev) 0 1 1 0 1 0
29 897 928 (orig) 0 1 0 0 1 0

30 929 960 (rev) 1 1 0 0 1 0

31 961 992 (orig) 1 0 0 0 1 0

32 993 1024 (rev) 0 0 0 0 1 0
33 1025 1056 (orig) 0 0 0 0 1 1

176 B. Bajorska-Harapińska

The next step was to examine 5-bit sequences made from y6− y10 for each section.
The first observation was that y6 − y10 change from section to section exactly in the
order we called original (i.e. the one defined for y1−y5 within odd-numbered sections)
so again we have obtained all possible 0-1 sequences. We have suspected that this will
work similarly for y11−y15 (i.e. they remain unchanged within sections of consecutive
1024 elements and change from section to section in the order we called original)
and so on. Still, it was not obvious how to prove it in general. But eventually, we
understood what we were looking at – actually the 5-bit sequences made from y6−y10
almost formed the Gray code list, but the sequences were written in the inverse order
(i.e. with the least significant bit at the beginning). So it was enough to reverse the
notation, shift the numbering (to start from 0) and that solved the problem as we can
encode every natural number with the Gray code. Moreover, we have noticed a new
(at least to us) method to create (define) the n-bit Gray code list Gn, namely Gn is
the list of elements g0, . . . g2n−1 created due to the following rules

1. g0 = 0...0 (n bits)
2. for every integer 0 6 k 6 2n−1 − 1 the element g2k+1 is obtained from g2k by

changing the last bit,
3. for every integer 1 6 k 6 2n−1 for g2k we encounter two situations:

a. the last bit of g2k−1 is 1 — then to get g2k we change 2nd bit from the right
in g2k−1,

b. the last m bits in g2k−1 are 0 and m+1-st (from the right) bit is 1 — then to
get g2k we change m+ 2-nd bit (from the right) in g2k−1.

Note that the standard method to get Gn is the recursive one: once we have
Gn−1 we write it in the reverse order. Next, we add the prefix 0 to every ele-
ment of the original list, the prefix 1 to every element of the reversed one and
concatenate. Since the list for 1-bit code is G1 = (0, 1) the list for 2-bit code is
G2 = (00, 01, 11, 10) (that means that 0 = 00G, 1 = 01G, 2 = 11G and 3 = 10G), next
G3 = (000, 001, 011, 010, 110, 111, 101, 100) and so on.

3. Conclusions

There are not too many general methods for examining automorphisms of the
rooted trees and their properties, so the brute force approach we have described can
be useful sometimes. Note however, that the programming was possible because of the
regularity of elements we examined. On the other hand, there are still many questions
and problems in this area concerning automorphisms that have pretty regular form,
so some procedures (or even all of them after small changes) we have described in the
previous section can be used in future investigations.

Let us also mention that one immediate profit we have gained was the idea for
the proof of our second main theorem in [1], which also concerned the construction
described here but with a different set Z0. Namely, instead of each generator g defined
by (7) or (9) we took three, with each three components to be the same as in g and 0
elsewhere, starting from 1-st, 2-nd and 3-rd. For a that gave identity or a, as before.

How programming was used to determine factorizations of self-similar groups. . . 177

Since components of b, c, d are regular in cycles of 3, from each of them we got either
identity or elements with every three nonzero components starting either from 2nd or
3rd or 4th, that is those elements were

a3N−1 := [0, α2, 0, 0, α5, 0, 0, α8, 0, 0, α11, 0, 0, . . .],

a3N := [0, 0, α3, 0, 0, α6, 0, 0, α9, 0, 0, α12, 0, . . .],

a3N+1 := [0, 0, 0, α4, 0, 0, α7, 0, 0, α10, 0, 0, α13, . . .].

and finally Z0 = {a, a3N−1, a3N, a3N+1}. It turned out that we could also define some
set T such that elements ofH0 were in the form t1a . . . atn, ti ∈ T and all observations
remained valid whence elements of Z1 could have also been defined using the Gray
code.

4. Mathematica code

Below we give a code (with comments) in Mathematica for all the procedures we
described in Section 2.

Procedure 1

gen[k_, h_] := Module[{m, subst, poly, polyMod}, m = Length[h];

subst = Table[x[j] -> (x[j] + h[[j]]), {j, 1, m}];

(* new argument *)

poly = Expand[(k /. subst)];

(* substitution *)

polyMod = PolynomialMod[(poly /. x[j_]^_ -> x[j]), 2];

(* reduction *)

Return[Simplify[polyMod]] (* factor form *)

];

Procedure 2

allGen[n_] := (

step[1] = listGen[1] = {k};

step[m_ /; m <= n] := step[m] = If[EvenQ[m],

gen[listGen[m - 1], a],

Table[gen[listGen[m - 1], T[[i]]], {i, 15}]

]; (* m-th step of generating *)

newGen[m_]:=newGen[m]=Complement[Flatten[step[m]],listGen[m-1]];

(* new generators that appear on m-th step *)

listGen[m_] := listGen[m] = Join[listGen[m - 1], newGen[m]];

(* list of distinct generators after m steps *)

Print["Step 1 (the basic generator): ";

Do[

178 B. Bajorska-Harapińska

Print["Step ",i, " (acting on ",

If[EvenQ[i],

"each generator from the previous list by a): ",

"generators from the previous step by n-th element of T): "]

];

Do[Print[j, ") ", step[i][[j]]], {j, Length[step[i]]}];

Print["List of new generators: ", newGen[i]];

Print["Distinct generators obtained so far: ",Length[listGen[i]]];

Print["List : ", listGen[i]]

,{i, 2, n}]

)

Procedure 3

procGen[n_] := (

Module[{m},

gens[1] = k;

gens[m_]:=gens[m]=If[EvenQ[m], gen[gens[m-1],a], gen[gens[m-1],t]];

(* a for even, t for odd *)

Do[Print[i, ") ", gens[i]], {i, 1, 2 n}]

];

listGen = DeleteDuplicates[Table[gens[i], {i, 1, 2 n}]];

(* distinct generators’ list *)

Print["Number of distinct generators: ", Length[listGen]]

)

Procedure 4

proc2Gen[n_] := (

Module[{m},

gens[1] = k; (* 1st part of the list *)

gens[m_ /; m < 33] :=

gens[m]=If[EvenQ[m], gen[gens[m-1],a], gen[gens[m-1],t]];

gens[33]=gen[gens[32], s]; (* 2nd part of the list *)

gens[m_ /; m > 33] :=

gens[m]=If[EvenQ[m], gen[gens[m-1],a], gen[gens[m-1],t]];

Do[Print[i, ") ", gens[i]], {i, 1, 2 n}]

];

listGen = DeleteDuplicates[Table[gens[i], {i, 1, 2 n}]];

(* distinct generators’ list *)

Print["Number of distinct generators: ", Length[listGen]])

How programming was used to determine factorizations of self-similar groups. . . 179

Procedure 5

generators[seq_] := (

seqEx = {};

Do[For[q=1,q <= i[[2]], q++,

AppendTo[seqEx,a]; AppendTo[seqEx,i[[1]]]],

{i, seq}]; (* explicit form of seq including a’s *)

listGen[1] = k;

listGen[m_ /;m<= Length[seqEx]+1]:=

listGen[m]=gen[listGen[m-1], seqEx[[m-1]]];

distGen=DeleteDuplicates[Table[listGen[i], {i,Length[seqEx]+1}]];

Print["Number of generators obtained by seq: ", Length[seqEx]+1];

Print["Number of distinct generators: ", Length[distGen]])

Acknowledgements. The author gratefully acknowledges the many helpful suggestions and re-
marks of the Referee. Also the author would like to thank Damian S lota and Maciej Harapiński for
their help in writing Mathematica code.

Bibliography

1. Bajorska B.: Factorizations of self similar groups associated to the first Grigorchuk group. Comm.
Algebra 44 (2016), 5004–5026.

2. Grigorchuk R.I.: On Burnside’s problem on periodic groups. Funkcjonal. Anal. i Prilozhen 14,
no.1 (1980), 53–54 (in Russian). English translation: Functional Anal. Appl. 14, no.1 (1980),
41–43.

3. Kaloujnine L.: Über eine Verallgemeinerung der p-Sylow-gruppen symmetrischer Gruppen. Acta
Math. Acad. Sci. Hungar. 2 (1951), 197–221 (in Russian, German summary).

4. Sushchanskǐı V.I.: Wreath products and periodic factorable groups. Mat. Sb. 180, no. 8 (1989),
1073–1091 (in Russian). English translation: Math. USSR-Sb. 67, no.2 (1990), 535–553.

